Decision making for industrial agents in Smart Grid
applications

Gulnara Zhabelova', Valeriy Vyatkin', Viktor Dubinin’
'Department of Computer Science, Electrical and Space Engineering, Luled Tekniska Universitet, Luled, Sweden
*Department of Electrical Engineering and Automation, Aalto University, Helsinki, Finland
3University of Penza, Penza, Russia

e-mail: gulnara.zhabelova@ltu.se, vyatkin@ieee.org, victor n_dubinin@yahoo.com

Abstract— Agent technology in the power system domain is
the realm of theory and laboratory simulation. Agent-based
systems, due to their complexity of concept and design, may
appear difficult to implement and maintain, and hence more
expensive, which is a prohibiting factor against using the new
technology. Designing a decision-making system for an agent is
one of the most complex tasks in the development of agent-based
systems. Designing a decision-making system enabling proactive
behaviours while maintaining reasonable complexity is a
challenge. This paper proposes an deliberative decision making
system for an industrial agent which allows pro-active behaviour
of the agent while maintaining reasonable complexity. It employs
a combination of practical and procedural reasoning principles.
The formal definition of the proposed deliberative layer is
derived in the paper. The procedural reasoning is based on IEC
61850 Logical Node concept and implemented with IEC 61499
reference architecture. The proposed agent architecture is
demonstrated on the Fault Location Isolation and Supply
Restoration application and validated via so-simulation with
Matlab model of the sample distribution network.

Keywords— Agent, Smart Grid, Reasoning, Decision making,
IEC 61499, IEC 61850, deliberation, power system automation,
distributed grid intelligence.

L INTRODUCTION

A Smart Grid is a complex energy infrastructure managing
distributed renewable energy generation, storage, transmission,
distribution and consumption. The Smart Grid allows for bi-
directional flow of energy, enabling consumers to sell excess
energy back to the grid.

To control such a complex and highly distributed
infrastructure, the Smart Grid has to employ new generation
distributed automation and control systems, i.e. Distributed
Grid Intelligence (DGI). DGI is a network of distributed nodes
performing intelligent control to achieve local goals and
participating in overall Smart Grid operation and control to
achieve system objectives. These nodes are essentially the
agents operating autonomously, reacting on the environment
and proactively negotiating among themselves to achieve the
system objectives, exhibiting social behaviour.

However, the majority of agent-based systems applied to
power system automation domain are the laboratory
simulations. Due to the nature of agent technology, the
designed system can exhibit a wide variety of expected and
unintended behaviours, which may lead to inefficient or

978-1-4799-4032-5/14/$31.00 ©2014 IEEE

unstable operation [1, 2]. Agent-based systems, due to their
complexity of concept and design, may appear difficult to
implement and maintain, and hence more expensive, which is a
prohibiting factor against using the new technology [2].

Designing a decision-making system for an agent is one of
the most complex tasks in the development of agent-based
systems. The complexity of the decision-making can be
reduced by using the reactive architecture. These agents simply
respond to their environment [3, 4]. Reactive architecture
directly links the sensory data to acting capabilities of an agent
[2]. However, it is difficult to implement pro-activeness and
goal-oriented behaviour based on reactive architecture alone.
The architecture only looks at the present situation and does
not take into account long term goals. This is where the
challenge lays, that is, designing a decision making system
enabling proactive behaviours while maintaining reasonable
complexity.

The decision-making system, which allows for pro-active
behaviour is a deliberative architecture. In the deliberative
architecture the goals and plans are explicitly represented. The
most popular deliberative agent architecture is the Beliefs,
Desire and Intentions (BDI) of Rao and Georgeff [3]. The
beliefs are the sensory input accumulated over time; desires are
the delegated goals. Based on its beliefs and desires, an agent
decides on its intentions, i.e. what it wants to do in the future.
The intentions direct the actions the agent is committed to
perform, unless it has to abandon the intention, given that the
situation has changed.

The BDI agents can pursue their goals pro-actively and
react to the environment. BDI architecture is capable to
implement autonomous reactive and pro-active agents [2].

The disadvantage of deliberative reasoning is the time
needed for an agent to evaluate the updated beliefs and form an
intention, i.e. it reacts only after the sensory data has gone
through all the steps. For complex agents it may take a
relatively long time, and for highly dynamic environments it
may be too long to react to changes [2]. Additionally, such
deliberation process requires computational resources to be
available.

In order to be applied in the power system automation
domain, the agent architecture should be practical. That is, to
be implementable by a domain engineer, reflect specifics of
decision making in the power system automation domain,

3584

satisfy system requirements such as reaction time, and be
executable on field devices.

This paper proposes a deliberative decision making system
for an industrial agent and aims at addressing above mentioned
issues and allow reactive and pro-active behaviour of the agent
while maintaining reasonable complexity. The proposed agent
architecture is based on industrial standards IEC 61499 and
IEC61850 and is intended to facilitate industrial adoption of
agent technology to the power system automation domain.

This paper will focus on the deliberative layer of the
proposed architecture; full description of the architecture can
be found in [5].

The paper is structured as follows. Next section II presents
a discussion on agent reasoning and describes deliberation
process based on practical and procedural reasoning. In section
III, the proposed reasoning system for industrial agent is
presented. This section derives a formal description of the
reasoning process. The proposed decision making system was
implemented using IEC 61499 and tested on Fault Location
Isolation and Supply Restoration scenario. The implementation
is discussed in section IV. Chapter V presents the results. The
paper conclusion is outlined in section VI with the overview of
the future work.

II. AGENT REASONING

A. Discussion on agent reasoning. deductive, practical and
procedural

The 'traditional" artificial intelligence uses logical
reasoning to decide what to do. The logical reasoning operates
over symbolic representation of the environment and its desired
behaviour. This type of decision making is a deductive
reasoning [4, 6].

It operates with pure logic specifications. Deductive
reasoning uses symbolic representation of the world around it,
often expressed in formal logical languages such as Description
Logic [7]. The reasoning about the world is logical deduction
or theorem proving. An agent's decision making is
implemented as a logical theory, and then selection of an action
is a proof [3, 8]. Deductive reasoning has two key problems:
transduction and representation/reasoning. The first problem is
translating the real world environment into an accurate
adequate description of the world, in time for the description to
still be useful. The second problem is to convert the description
of the world into symbolic representation and let the agent
reason with it in time for the result of the reasoning to be
useful.

Logic-based decision making is elegant and has clear
semantics [3, 8]. However, it has many disadvantages [3, §].
Deductive reasoning inherits computational complexity of
theorem proving. The assumption of calculative rationality,
that the world will not change while the agent is reasoning and
the selected action, once decision making is completed, is still
rational, making agents based on deductive reasoning not fit for
complex, dynamic physical environment [3]. Computational
complexity of this decision-making requires both time and
resources to be available. Moreover, accurate symbolic
representation of the real world, especially sensors, is complex

and time consuming. It raises practicability issues of purely
deductive reasoning agents [3, 8].

Practical agents and especially industrial agents operate
under resource constraints of field devices such as fixed size
memory and fixed processor performance. These limitations
restrict the size of computation, which the agent can perform.
The agent cannot deliberate forever, in an industrial
environment there are time constraints of some kind. That
means that deliberation should be carried out within a finite
number of processor cycles. Thus the reasoning should be
effective and decisive. One such method is Practical
Reasoning [3]. This reasoning process involves two parts:
deliberation and means-end reasoning. Deliberation resolves
what state of affairs the agent wants to achieve. Means-end
reasoning is a planning process, deciding how to achieve the
desired state of affairs. The agent, through the deliberation
process, will generate intentions, and by means-end reasoning
perform planning and arrive to a plan of execution.

Deliberation and means-end reasoning are computational
processes. Resources and time are spent on generating desires,
re-considering intentions and generating plans of actions. As
mentioned above, industrial agents work under both time and
resource constraints. The actions, which an industrial agent can
take in many cases are known, restricted and designed in. Thus,
the plans of the agents can be pre-compiled. This, in principle,
removes the need for planning processes in the agent's
reasoning. The agent's purpose is also known, which defines
the desires of an agent, and thus eliminates option generation
from the reasoning process. The objectives or desires of an
agent and all possible plans are provided at compile time as a
library. In this manner, the required processing resources can
be reduced. Firstly, by an abridged deliberation process, which
is still sufficient for intention filter function; and secondly, by
substituting means-end reasoning with a library of pre-
compiled plans. The additional process of plan selection is
introduced.

This discussed alternative architecture is so-called
Procedural Reasoning System (PRS) [3]. PRS does not include
a planning process. Instead it provides a library of pre-
complied plans. The PRS is the basis of the deliberative part of
the proposed architecture. Since the agent is based on an IEC
61850 Logical Node (LN, described in section III) and the LN
defines the agent's beliefs and predefines the agent's purpose
and desires. The domain specific function of an LN influences
the possible actions of the agent, which will ultimately be
designed in by the domain engineer. Thus, the agent will have
a library of plans, predefined desires and formed (structured)
beliefs. These are the building blocks of the PRS.

PRS implements the BDI architecture (Belief, Desire,
Intention) and provides the structures of the BDI concept [6].
Procedural reasoning contains three main predefined data
sources: plan library, beliefs structure and desires. The
deliberation process is the process of selecting between
different possible competing plans. This reasoning engine is
referred to as the interpreter. The interpreter will consider
beliefs, desires, possible plans and current intentions to select a
plan, which will realize the desired state of affairs.

3585

A plan consists of a goal, a context and a body. A goal is a
post-condition of a plan, the context is the precondition and the
body can be both a set of actions to carry out, or goals to
achieve. An agent typically will have a top-level goal. The
interpreter maintains goals to be achieved in the intention
stack. Current intention is on the top of the stack. The options
are selected from possible plans, where the post-conditions
match the goals placed on the top of the intention stack, while
preconditions are satisfied by the current beliefs. Then the
interpreter filters out the plans to execute by using either meta-
level plans or utility measures of some kind. The chosen plan is
executed, and it results in the execution of actions and possibly
in new goals pushed into the intention stack. If the plan fails to
achieve the goal, the agent selects different plan.

B. Proposed deliberation process based on practical and
procedural reasoning

The general BDI architecture control flow is depicted in
Fig. 1[9]. There are three main steps: deliberation, planning
and plan execution. The deliberation process decides what to
achieve by generating possible goals or intentions and filtering
the best intention for the agent to commit to. Means-end
reasoning performs the planning algorithm, which generates a
plan. The control loop starts from belief revision updating them
with sensory inputs. Using beliefs and current intentions, the
option generation function provides a set of achievable goals or
intentions. These goals pass through the filter to select some
from among the competing intentions. Now, the agent is
committed to achieve them. Current beliefs and intentions are
the input into the planning process, which results in a plan. If
the plan is sound, then the agent can execute the planned
actions.

Belief revision Inputs

| Beliefs H
— Generate options TN

| Des'\rei ‘,K

Intentions |4 \
Planning

| Plal_ ‘,K \

Fig. 1 Control loop of deliberative model.

Filter intentions Iff Fer

In the procedural reasoning, there is no planning in
principle. By establishing the agent on the basis of well-defined
LN, the purpose of the agent, its desires, intentions and
possible actions are known at the design stage. Therefore, this
allows design of a library of possible and sound plans. The pre-
compiled plans can simplify the deliberation process and
remove means-end reasoning. The option generation function
is simplified to a match and select, rather than generating
options/goals from scratch. Filter function is stripped down to
the selection of the suitable plan comparing their utility ratings,
priorities or using a meta-level plan. This results in agent
decision making being simpler, faster and less demanding on
resources.

In the next section, a formal model of the proposed agent
architecture is derived based on the formal model of a practical
reasoning BDI architecture, and procedural reasoning
principles.

III. PROPSOED PROCEDURAL REASONING SYSTEM FOR AN
AUTOMATION AGENT

The agent architecture proposed in [5] is based on industrial
standards and is aimed at facilitating industrial adoption of
agent technology to the power system automation domain. The
intention of this section is to describe the deliberative decision
making of the agent and derive its formal definition.

The foundation of the proposed agent is the IEC 61499 and
IEC 61850 standards.

The IEC 61850 standard "Communication networks and
systems for power system utility automation" [10] reflects the
advanced industrial practice for designing substation
automation, control and protection applications. IEC 61850
decomposes the power substation, including functions for
monitoring, control and protection, down to objects so-called
LN. An LN describes a domain specific automation function as
its information model. For example, a function overcurrent
protection is modelled as PIOC LN.

The agent is based on an LN, so that an LN is mapped to an
agent according to its objectives and functions. An agent
inherits the information model of the LN as its beliefs and the
domain specific function of an LN as its desires or objectives.
The beliefs and the desires will define the intentions of the
agent. Therefore the LN information model and modelling
function will determine actions of the agent.

Beliefs are the sensory inputs coming from the
environment, communication data coming from network and
current internal context of the agent. LN is the structured data
of the respective domain specific function. This information
composes the beliefs of the agent. Let us denote B_In be
current beliefs of the agent. Let Bel_In be a set of agent's
beliefs, then B_In € Bel_ In. Beliefs are updated with
perceptual inputs using the belief revision function:

brf:Bel_ln x 2P¢" - Bel_In
Per is a non empty set of percepts.

For instance, beliefs are updated with environment
perception, which includes also communication data, using
above defined function as B_In « brf (B_In, Per).

Desires describe the purpose of the agent or top level goals.
They are not directed on actions, they determine the main
course of the agent, which influences its intentions. The
respective domain specific function of the LN defines the
desire of the agent. Let us denote desire of the agent as D_In.

Intentions are practical goals whose successful achievement
will lead to achievement of the desire, i.e. top-level goal.
Intentions are persistent goals, which are directed towards
actions. An intention is realised by executing a set of actions.
In proposed architecture, the intentions are described in the
plans, as post-conditions, i.e. the goal to be achieved by
executing the plan. So then an intention becomes a goal to be

3586

accomplished. Let us denote I_In as a current intention and
Int_InInt™ as a set of intentions, I_In € Ibt_In

The repertoire of possible actions that the agent based on
LN, can take, is known. The actions will be aligned with the
purpose of the agent. Let a be an action to be executed, and
Ac_In = {ay, ay, ..., @y} be the set of all possible actions of the
agent. A plan in this architecture is a sequence of actions
T = 04,0y, ..,04, , Where a; € Ac_In. Then Plans_In is a set
of all plans designed for the agent (a library of plans)
Plans_In = {ny, my, ..., m,}.

The deliberation is represented by two functions: option
generation and filtering. An option generation function selects
the possible plans to achieve, given intention and current
beliefs. This set of possible plans is denoted as P,P C
Plans_In. The function is defined as follows:

options: 2PLansIn « Int In x Bel_In — 2°F

So then using P « options(Plans_In,I_In,B_In) an
agent generates options (P) for achieving intention I_In. From
the generated set of possible plans capable to achieve current
intention, P, a filtering function selects one plan m; according
to the defined criteria. This deliberation process can take
various forms. Some of them simply based on such criteria as
priority or utility ratings, and others use meta-level plans.
Meta-level plans are plans about plans and can change the
direction of agents’ intentions. Let us assume, that the plan is
selected based on utility rating, which is expressed with a
number from a set of natural numbers N. Then, we denote
filtering function as

filter:2P XN - P

For example, m « filter(P,N) selects a suitable plan
from the generated options P.

The agent maintains intention stack with the goals or
intentions pending to be accomplished. The intention stack is a
linear ordered set and denoted as
Stack = {I,_In,I,_In, ..., I,_In}, where I;_In € Int_In.

To manipulate plans and intention stack, there is need to
define the following auxiliary functions. If M denotes a linear
ordered set M = {my, m,, ..., m,,}, then

— hd(M) is the top most entry in the set - m;. The procedure
does not delete the entry from the set, it copies it over to the
variable, e.g. i « hd(M) implies that i =m; and M =
{my,my, ...,m,};

— tail(M) is the set comprising of all the entries of set M
except the first entry, and the order of entries is preserved,
e.g. My = tail(M), then M; = {m,, ms, ..., m,}.

For a sequence of actions of a plan m = ay, a5, ..., a,

where w € P,

— execute(a) is a procedure that executes given action a;

— empty(m) is Boolean function indicating whether the m is
empty, i.e. there are no actions left to execute in the pan ;

— head(t) is first action a; in the plan body of rr;

— tailPlan(m) is the set comprising of all actions of the plan 7,
except the first action «;, and the order of actions is
preserved.

The agent maintains an intention until it has been
succeeded, the intention is impossible or all planned actions are
executed. Therefore, corresponding functions are defined as
follows. A function evaluating whether the intention has been
achieved is defined as

succeeded: Int_In X Bel_In X P — {true, false}

The function succeeded(I_In,B_In,m) considers plan
mw € P and the current beliefs B_In € Bel_In and decides
whether the intention [_In € Int_In has been satisfied.
Considering current beliefs B_In € Bel_In and plan m € P,
current intention I_Iln € Int_In is identified as impossible by
function impossible(l;,, B_In,), which is defined as follows

impossible: Int_In X Bel_In X P — {true, false}

These two functions represent the commitments to the
means, i.e. to the plan. Commitment to the ends, i.e. intention
or goal, is realised through function

reconsider: Int_In X Bel_In X P — {true, false}

It is a Boolean function. Based on current beliefs B_ln €
Bel In and a plan w € P, the reconsider(I_ln,B_Iln,m)
function returns "frue" when it decides, that the intention
I_In € Int_In needs to be reconsidered by the agent. The
reconsideration is the deliberation process: generating options
and filtering out an intention to commit to. Fig. 2 presents
control loop of the proposed deliberative model. The desire is
pushed into the intention stack at the start up. This will
motivate the agent to operate and generate new intentions. The
rest of the algorithm is the loop.

The loop starts updating the beliefs with the perceptual
inputs with function see: E — Per, where Per is a set of
perceptions and E is a set of states of the environment. The
intention to be achieved is always at the top of the stack. The
agent gets the intention /_In from the stack, and decides how to
achieve it. This will result in selection of a plan to commit.
This plan is then executed. The procedure execute(c) performs
a given action « € m. The action o may push new intentions
into the stack.

The agent implements single-minded commitment with
while loop in rows 10-21. The while loop is dedicated to a
chosen plan and will continue until there are no actions in the
plan to execute or the intention has been succeeded or become
impossible. The agent is reasonably open minded. The agent
maintains an intention as long as it is still believed necessary to
achieve. The deliberation is resource and time demanding
process, so it is better to deliberate only when it is necessary.
After executing an action of the selected plan, agent updates its
beliefs and updates current intention with the intention on top
of the stack (row 16). If action of the plan did not push new
intention into the stack, then the current intention will not
change. Next, reconsider(I_ln, B_In,) function (row 17)
checks if the intention, the current plan is aimed for, is still
valid, i.e. there is still a reason to achieve the intention. If it
decides the current intention (lets denote it as [;_In) should be
reconsidered, an agent generates new options and filters out a
new plan. And the while loop 10-21 will start executing the
new plan. A new plan can be selected in two cases. In the first
case, new intention I;_In has been pushed in to the stack, and

3587

therefore reconsider(I_In,B_Iln,m) function decides to systems in automation and control. The IEC 61499 standard

deliberate. Deliberation selects a new plan, which is suited for "defines an open reference architecture for next generation of

the new intention. distributed control and automation" [11]. The key technologies

L Bine By [+ By In are initial belists o prov1ded by the standard are c}emgn structures, such as Basic

2. Stack «— D.ln: [* Dln 5 the top leval goal or desire*| Function Block (FB), Composite FB and Service Interface FB

3. while tiue do . . (SIFB); Application model and abstract Device Model. FB

4. Per see(E : /* Cet the next percept Per */ . . .

5. Bne— brf (Bin.Per): [*Update beliefs®/ encapsulates automation functions or any programming

6. il hdfStack); [*Copy intention at head of Stack into [in®/ modules in a portable and re-usable, platform independent

S B optonsiPansin LB i) form. An event driven processing of IEC 61499 can provide

9. m o+ Filter{P,Ny; . g : N . N

10. while not {empty{m) or succesded(Iin,B in,7) or lmpessible(lin,Bin.m)) do faster reaction time than the cycle based execution of industrial

0 @ « head(x): controllers such as Programmable Logical Controllers (PLCs)
. execute{a) ; [1 1]

13. m o« tailPlan{m): .

14. Per « see(E); [*CGet the next percept Per *f .

13, Bin « bri{Bin Per); [“Update beliefs®| Fig. 3 shows the example of the CSWT agent from the Fault

16. I — Ad{Stack): [*Copy intention at head of Stack into [in*/ : : :

. T (reconsidor(t in,B.inx)) then Loca}tlop Isolatl.on . and Supply Restoration (FLISR)

18 P — options(Plans In,d tn, B_in) : application, described in [12].

19. T Filter{P,W); . .

20. end_Lf; There are 2 reactive behaviours: OperateXCBR and

21. end_while: . . .

22 Stack « tailfStack); /*Remove current intention from head of stack */ Fault]solatedKeeper, ConStltutlng reactive layer Of the

23. end while: architecture.

Fig. 2. An algorithm of the proposed deliberative model. The deliberative layer is comprised of five plans:

ProvideAltertnavieSupply, Faultlsolation, = FaultLocated,
In the second case, the current intention has not changed Restore and GetHelp; an IntentionStack and the reasoning
(still [;_In), but beliefs have changed, which results in a new engine - Interpreter.
more suitable plan. If the deliberation resulted in a new plan
which is different to the current plan, then the function
reconsider(I_In, B_In,m) was optimal and it identified the
intention and plan, which were no longer valid. On the other
hand, if new plan is the same as the current plan, the function
reconsider(I_In,B_In,m) was not optimal and the agent
wasted time deliberating.

The interface of the IntentionStack FB allows for plans to
push new intentions and the /nferpreter to read the top of the
stack and to delete an intention when necessary. A plan is
implemented with a basic FB. Each plan has input StartPlan
and outputs PlanlsCompleted and newlnt associated with
newlntVar. Using provided outputs plans can push new
intentions into the CSWI Stack. Each plan also has a logic
Next section will describe the implementation of the dependent interface for reading current beliefs and outputing

proposed deliberative reasoning with IEC 61499. actions. The interface of the Interpreter provides signals for
controlling stack and plans and also reads necessary beliefs in
IV. APPLICATION OF THE PROPOSED AGENT REASONING order to deliberate a suitable intention and a plan.

SYSTEM IN THE FLISR SCENARIO
The behaviour of the deliberative layer is controlled by

The proposed deliberation reasoning is implemented with 1100, 0101 and depicted in Fig. 4. It implements the control
the IEC 61499 reference architecture. loop presented in Fig. 2. The Interpreter requests the intention

IEC 61499 is designed for development of distributed at the top of the stack and starts deliberating considering

e L You are running & dema versicn, Soe functionality will be disabled
INIT INTO INIT INTo b roctConirol GmbH
SResponse SReq SReq SRep L
Restors Rmvint f— M newlnt IntentionRmvd L FBS \L
HesdroomRequest StartPlsnFaultlocsted {1 Ry INITO
PlanFsultl scatedCompleisd StartPlanProvideAlterSuppiy {— a — StartPlan OperatelocalXCER) FES
PlanProvidedlterSupply Compsisd StertPlanFaultisclson {1 Planls Completed OperstDownsiream¥CER F—= INIT INTO
PlanF sultlsolationCompieted StartPlanGetHslp - al aot LocalXCBROperateConfirmstion Faultlsolated = StartPlsn Plsn_Completsd
PlanGetHelpCompleied StartPlanRestore L Lo | DownStreamXCBROpersteConfirmstion Newlntention f—= Completed ~ Newntention
PlanRestoreCompleked <1 Timeout PlanCompleted o
FaultLocatedPIOC reset CSWI_Plan_FaultLocaied
IntenticnRmd L s StartTimer Qo
(=] = NIT INTO b — O [— NewintentionOut
C terprcier | SetPlanRestoe FlanRestoreCompleed C P Fitisol-bin
a QO | Completed Reseth qal Qop
Restoredin = ' LocalXCBRConfirmationin FaultislsolatedOut {
intenticnn o AL || DownStreamXCERConfirmationin ionOu
FauliLocatedn — OperateLocal XCEROW p————|
= §i aop OperateD ERDU
FBY RestoredOut —
INIT INT b
M1 StartPlan PlanlsCompleted (4 il
.~ PlanCompleted 4 il Fhe
— FaultlsclatedReply reset | FB8 N H T o b
—1 CapacityReplyFromTieSich FaulelsolatedRequest [—4f INIT INTO Fst 5 tetromOutside OperateXCER [~
LocalXCBRConfirmstion HelpToTieSwich <l StartPlan PlanisComples b= 11 5727) ConfirmOpersie |—|
DovwmstresmConfirmatiorin OperateloclXCER {4 PlanCompleted Newintention P, o FroxeER ConfirmOpersielocd 4 -
Timeout OperstsD CER] HeadroomReplyFromiIpsheam Reset f e
ReadyToTieSwich f—-4 Cancel HeadroomRequestTolpstreamSaich {1 o . I
StartTimerTie F—1 ReadyToSupplyFromTieSwitch ! plyToD - T — -1 ﬁ"‘F:‘S"'a‘ﬂEM e R‘egi
StariTimerDovnstreamSinich {— Timeout CancelOuToUpsieam |— - = o - R";' :;“"-5' o
ReadyToSupply Tollpsteam {—
csw_PlE.’_GenHap = TesieRl StartTimer (=) Operaten il a
[—+t+ OperatelnFromOthers OperateOutP— CSWI_Reactive Faultlsolaed
al gorp [\ 0 LT |4 Completedin T eepa
Faultlsclatedn NewlntentionOut {1 CSil_Plzn_Providedlternatve al Qop
EroughCapacibin LoadValueOut Supply PR ih
LocaXCERCenfirmationn OperateLocalXCBROu 4 & no
DownstreamXCERConfirmationn OperateDawnstreamXCEROw (.| HeadroomReply FromUpstreamin Xt i
ReadyToTieSwitchOu :—jr Hektoatinply 1ol i I l
m T T T

Fig. 3. CSWI agent. Internal structure: reactive behaviours, plans, intention stack and interpreter.

3588

current beliefs. There are three defined intention for CSWI
agent: "NormalOperation", "FaultOperation" and "Restore". In
these states the current intention is checked if it has succeeded
or become impossible, in which case the interpreter deletes the
current intention from the stack. If the intention is valid, the
agent selects a suitable plan, based on possible options (pre-
compiled plans), and current beliefs. The Interpreter performs
one plan at a time. Once plan is completed, Interpreter updates
the intention and starts the deliberation considering the updated
beliefs.

Under the "NormalOperation" intention, available plans
are: FaultLocated and ProvideAlternativeSupply. When the
CSWI is on the faulty feeder, then the FaultLocated plan is
performed, based on the data sent by local PIOC. This plan
pushes "FaultOperation" intention into the top of the stack.
When the CSWI is on the healthy feeder, the
PlanProvideAlternativeSupply plan is performed, by the
request from tie switch or downstream CSWI agent. This plan
pushes "Restore" intention into the stack.

Under the "FaultOperation" intention, there are two plans:
PlanFaultlsolation and PlanGetHelp. When fault recorded is
on this CSWI agent's section, then the PlanFaultlsolation is
selected and fault has to be isolated. When CSWI agent is on
the healthy section, it has to find alternative supply via tie
switch and adjacent feeder; this is achieved by performing
PlanGetHelp. By the completion, both of these plans push
intention "Restore" into the intention stack.

1

>
INIT

~
IntentionRmvd
SResponse

PlanFaultLocat

Restoredint

intentionin="No. intentionin="Re.

PlanProvideAlt

@D —]

Restore AND N
HeadroomRequest

FaultLocate
PlanRestoreCo.

[[startPlanProvideAltersypply]
RecordFaultLocation| StartPlanFaultLocated

[TstartPlanFaultisolation
RecordRestore | |

Fig. 4. Deliberation of the CSWI agent. ECC of Interpreter FB.

Under the "Restore" intention, there is only one plan -
PlanRestore, which is initiated on the signal from control
centre. This plan restores the state of the agent into the pre-
fault state, and once its completed the intention "Restore” is
achieved and is removed from the stack. The next intention in
the stack is "FaultOperation" which will be removed from
stack as it has been achieved and no longer valid considering
current beliefs: the restore signal from the control centre,
indicating that the fault has been cleared. On the top of the
intention stack remains intention "NormalOperation" and
Interpreter will be back to its original state and deliberate again
the necessary plan according to the current beliefs.

The PIOC agent has the same architecture with the own
library of plans and reactive behaviors.

The following section will present the simulation set up and
the results of the experiment.

You are running a demo version. Sor

SlanPlanGe(He!é

V. SIMULATION RESULTS

The above agent architecture in demonstrated on FLISR
application, which was developed with the earlier version of
the architecture and can be found in [12]. The short description
of the scenario is presented below; more details are in [12].

The FLISR agent-based system is developed in nxtControl
1.5. The agent-based FLISR application is coupled with the
Matlab model of the distribution system. Agents XCBR and
TCTR are interfaced to the circuit breakers and current
measurement units correspondingly. Communication is set up
using UDP blocks. Matlab simulation runs in parallel with the
IEC 61499 agent-based system. More details on the co-
simulation framework can be found in [13].

The fault is simulated on section of circuit breaker CB1
(Fig. 5). The task of PIOC agents is to locate the fault and
inform corresponding CSWI agents. CB1 must isolate the fault
on its section. On receiving the fault isolation event from CBI,
switches ROS 1 and ROS2 ask for help corresponding tie
switches. Ties switches initiate headroom calculation process
on the adjacent feeders Feeder 2 and Feeder 3. When tie
switches are satisfied that there is enough headroom capacity
on the adjacent feeders, they will signal ROS1 and ROS2.
ROS1 and ROS2 will isolate corresponding sections in
preparation for receiving alternative supply. Switches ROS1
and ROS4 will close to allow the power flow.

_
= == =
== = =
= = = =
- E—
Congrol Cetre
Zene Sub A Zone Sub B Zone Sub C
11kV 11kV 11kV
+H
cezl
7
ROSY
RYs7
ROSs = 4=
ROSE== \ ROS8 _“_
ran-| Help! N,
HGDH ar
G0 ROS4
Feader 2 Feeder 1 Feeder 3

Fig. 5. Sample distribution network. Fault events and search for alternative
supply.

The simulation result are shown on the Fig. 6. The fault
was cleared in 0.03 seconds of the simulation time after the
reclosure. Supply to sections ROS1 and ROS2 was restored
almost immediately, in 0.025 seconds of the simulation time.
As it can be seen, the sections ROS1 and ROS 2 have restored
the supply from feeders 2 and 3 correspondingly. It has to
noted, that the simulation time is of a different scale from the
real time. The fault clearance time and time taken to restore
supply in this experiment is dependent on the computational
power of the processor to perform Matlab simulation and run
softPLCs, and also on communication delays. What is
important in this experiment, is that the agents of the system
were able to successfully perform FLISR algorithm in a
distributed collaborative manner.

3589

The experiments were conducted simulating fault on
sections ROS1 and ROS2, and in both cases the fault was
correctly located, isolated and healthy sections restored
alternative supply correspondingly.

VI. CONCLUSION

The paper proposes deliberative decision-making, based on
both practical and procedural reasoning. The work aims at
reducing complexity and computational intensity of the agent
reasoning. It is based on IEC 61850 and implemented with IEC
61499, facilitating an industrial adoption of the agent
technology. The developed reasoning system is directly
executable on the industrial grade hardware, such as PLCs.
Utilising IEC 61850 LN concept facilitates the design process.
The agent identification task is straightforward; each LN maps
to an agent. Domain specific function of an LN guides the
development of the decision making system, defining the
agent's purpose, beliefs, possible actions and plans.

ROS4 |

T T T

ol

w

=
il

A.

Current,

e . | ; . . ‘(\/\/W
= T T
w | | | ‘ L L]

I i
Time, s.1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

Fig. 6. FLISR simulation results. Feeder 1.

The agent architecture was implemented and tested on
FLISR application, where developed agent-based system
successfully able to locate the fault, isolate it and restore supply
to un-affected sections of the feeder.

The future work involves formalization of agents’ beliefs as
IEC 61850 OWL ontology. Using reasoning an agent can
deduct facts, which are not explicitly defined in its beliefs. As
mentioned earlier, the deductive reasoning is not an optimal

decision making strategy for the agents operating in the
physical environment. Future work can be directed at
investigating an efficient deductive reasoning based on the
developed IEC 61850 ontological knowledge base.

VII. ACKNOWLEDGEMENT

This work has been supported, in part, by FREEDM NSF
Centre grant Y3.E.C12.

VIII. REFERENCES

[11 D.A. Cartes and S. K. Srivastava, "Agent Applications and their Future
in the Power Industry," in Power Engineering Society General Meeting,
2007. IEEE, 2007, pp. 1-6.

[2] S. Bussmann, N. R. Jennings, and M. Wooldridge, Multiagent systems
for manufacturing control: A design methodology. Germany: Springer-
Verlag, 2004.

[31 M. Wooldridge, An introduction to Multiagent Systems. UK: John
Wiley & Sons Ltd, 2009.

[4] M. Wooldridge and N. R. Jennings, "Intelligent Agents: Theory and
Practice," The knowledge Engineering Review, vol. 10, 1995.

[51 G. Zhabelova, "Software architecture and design methodology for
distributed agent-based automation of Smart Grid," Doctor of
Phylosophy, Department of Electrical and Computer Engineering, The
University of Auckland, Auckland, New Zealand, 2013.

[6] M. Wooldridge, Reasoning about Rational Agents. Cambridge, MA:
The MIT Press.

[71 L Horrocks, "Description Logic: a Formal Foundation for Languages
and Tools," presented at the Semantic Technology Conference
(SemTech2010), San Francisco, Claifornia, USA, 2010.

[8] M. Rovatsos, "Lecture 3 Deductive Reasoning Agents," in Agent Based
Systems, First ed Edinburgh, UK: The University of Informatics, 2012.

[97 M. Rovatsos, "Lecture 4 Practical Reasoning Agents," in Agent Based
Systems, First ed Edinburgh, UK: The University of Informatics, 2012.

[10] International Electrotechnical Comission, "IEC 61850 Communication
networks and systems for power utility automation," ed. 2, Switzerland,
2009.

[11] International Electrotechnical Commission, "IEC 61499-1 Fulnction
blocks - Architecture," ed. 1, Switzerland, 2005.

[12] G. Zhabelova and V. Vyatkin, "Multi-agent Smart Grid Automation
Architecture based on IEC 61850/61499 Intelligent Logical Nodes,"
Industrial Electronics, IEEE Transactions on, vol. PP, pp. 1-1,2011.

[13] C. Yang, G. Zhabelova, C. Yang, and V. Vyatkin, "Cosimulation
Environment for Event-Driven Distributed Controls of Smart Grid,"
Industrial Informatics, IEEE Transactions on, vol. 9, pp. 1423-1435,
2013.

3590

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

